
Combinatorial Auctions
Final Project Report for Combinatorial Optimization, Fall 2020

Joshua Peter Ebenezer

December 10th, 2020

Contents

1 Introduction 2

2 Formulation 2

3 Exact methods 3

4 Relaxations 3
4.1 Total Unimodularity . 3
4.2 Balanced matrices . 4
4.3 Perfect matrices . 5
4.4 Graph Theoretic methods . 5
4.5 Supermodular bidding functions . 5

5 Approximate methods 6
5.1 Submodular bidding functions with the value oracle model 6

5.1.1 Preliminaries . 6
5.1.2 The Submodular Welfare Problem . 8
5.1.3 Continuous Greedy Process . 10
5.1.4 Continuous Greedy Process for submodular maximization 11

5.2 Submodular Welfare Problems for the Demand Oracle model 12

6 Conclusion 15

1

Abstract

A combinatorial auction is a type of auction in which bidders can assign values to
combinations of items, instead of only assigning values to individual items. These are
useful in situations where bidders place more or less value to a combination of items
than to the sum of the individual values of those items. In this project report, some of
the main results in combinatorial auctions are studied in an expository fashion, with
particular attention given to a subclass of combinatorial auctions called the submodular
welfare problem.

1 Introduction

Many auctions involve the sale of a group of items that may be more valuable than the
sum of the individual values of those items. Examples include the auctioning of spectrum
for telecommunication, flight routes, network routing, delivery routes, railroad routes, etc.
The problem of identifying which sets of bids to accept is called the combinatorial auction
problem (CAP) [1], and will be studied here. The typical objective is to maximize the social
welfare, i.e. the pareto-optimal solution that assigns sets to the bidders such that the total
benefit to all the bidders is maximized.

I first present the formulation of the problem, and some specific cases in which polynomial
time solutions can be achieved.

2 Formulation

Let N be the set of bidders and M be the set of m distinct objects. For every subset S of
M let cj(S) be the bid that agent j ∈ N is willing to place for S. One can assume that
cj(S) ≥ 0. Let y(S, j) = 1 if the set of objects S is allocated to j ∈ N and 0 otherwise. The
problem can be written as

max Σj∈NΣS∈Mc
j(S)y(S, j) (1)

s.t. ΣS3iΣj∈Ny(S, j) ≤ 1 ∀i ∈M
ΣS∈My(S, j) ≤ 1 ∀j ∈ N
y(S, j) = 0, 1 ∀S ⊆M, j ∈ N

The objective is to maximize the total reward. The first constraint ensures that the same item
is not assigned to different bidders (i.e., assigned sets don’t overlap). The second constraint
ensure that each bidder never receives more than one set. This problem is NP-complete,
and this can be shown by reductions from two well-known NP-complete problems. Firstly,
if the bidding functions are superadditive, this formulation is equivalent to the set packing
problem (SPP).
SET PACKING PROBLEM: Given a set M of m elements and a collection V of subsets
with non-negative weights, find the largest weight collection of subsets that are pairwise
disjoint.

2

Define xj = 1 if the jth set in V with weight cj is selected and xj = 0 otherwise, and define
Aij = 1 if the jth set in V contains element i ∈M . SPP can be formulated as:

max cTx (2)

s.t. Ax ≤ 1

xj = 0, 1 ∀j ∈ N

If we treat the subsets as the collection of objects being bid for and the weights as the
values of the bids, SPP is the same as CAP. SPP is NP-hard, and therefore the CAP is also
NP-hard. CAP can also be cast as a reduction of the NP-complete Independent Set problem.

3 Exact methods

Exact solutions can be found by branch and bound algorithms or cutting plane algorithms.
Upper bounds are found by solving Lagrangean relaxations of CAP, by relaxing the 0-1
constraint and by moving other constraints to the optimization objective with a Lagrangean
penalty term. The relaxed problem would be:

Z(λ) = max cTx+ λT (1− Ax) (3)

s.t. 0 ≤ x ≤ 1

For a given value of λ, one can find Z(λ) easily. Notice that

Z(λ) = max cTx+ λT (1− Ax) s.t. 0 ≤ x ≤ 1 (4)

= max (c− ATλ)Tx+ λT1 s.t. 0 ≤ x ≤ 1

This will be maximized if we set xj = 1 when cj − (ATλ)j > 0 and 0 otherwise. Any value
of Z(λ) is an upper bound to CAP. Define

ZLP = min
λ
Z(λ) (5)

The value of ZLP can be found by the subgradient algorithm iteratively, and clearly provides
the best upper bound to the solution of CAP from the Lagrangean formulation.

4 Relaxations

4.1 Total Unimodularity

A matrix is said to be totally unimodular (TU) if the determinant of every square submatrix
is 0 or ±1. If the matrix A in equation 2 is TU, then the solution to CAP is integral.
Proof : According to Cramer’s rule, the extreme points are given by

xj =
detAj
detA

j = 1, 2 . . . N (6)

3

where Aj is the matrix formed by replacing the jth column of A with 1. The denominator is
±1 if the problem is feasible and the numerator is a sum of 1s and -1s since the submatrices
used to calculate the determinant along the jth row all have values in 0 or ±1. Therefore
this fraction is integral.

A special case of totally unimodular matrices can occur when the items being bid are
contiguous in some sense. For example, if the items are plots of land, contiguous plots would
be more favorable to bidders, and hence subsets with adjacent items (plots of land) would
be more likely to appear in the set of subsets with non-negative weights (i.e., sets which are
of interest to bidders). This would mean that columns in A would have adjacent ones. Such
a matrix has the consecutive-ones property, and is totally unimodular.

Another example can be found from bipartite graphs. Adjacency matrices of bipartite
graphs are totally unimodular. A constraint matrix corresponding to bipartite graphs would
imply that the sets with non-negative weights (i.e. important sets) are those with bidding
items from two disjoints sets. These two sets could be complementary in some way. An
example could be air routes between the East Coast and West Coast. Routes between
locations on the East Coast or the West Coast could be of less importance, while routes that
connect the coasts would be more important.

4.2 Balanced matrices

A 0, 1 matrix is balanced if it does not contain a square submatrix of odd order with exactly
two ones per row and per column. If A is balanced, the solution to 2 is integral.
Proof : Assume that this is not true, and that A is the minimal size matrix for which this
is not true, i.e. that for every proper submatrix of A, (2) has an integral solution. Assume
that x∗ is a fractional extreme point. Since x∗ < 1, at least two elements of each row of
A have to be 1. Let A′ be the matrix obtained from removing the first row from A. By
our assumption that A is minimal, the extreme points corresponding to A′ are integral. Let
P (A′) be the polytope corresponding to A’. Since x∗ ∈ P (A′) (i.e. it belongs to a face of
dimension 1), it must be a linear combination of some extreme points xS and xT .

x∗ = λxS + (1− λ)xQ (7)

Let S = {j : xSj = 1} and T = {j : xQj = 1}. Since 0 < x∗j < 1∀j, S ∩ T = φ and S ∪ T = E,
where E is the set of labels for the columns of A. Since AxS = 1 and AxQ = 1, each row of
A other than the first row has exactly two 1s. A similar argument can be applied to each
row to show that all rows have exactly two 1s. Since A is balanced, it is the incident-edge
matrix of a bipartite graph. Since it is square and has two ones in each row, the graph has
an even circuit, which contradicts the non-singularity of A. QED.

This case can arise for CAP in some instances. For example, consider that some locations
are being bid for, and that these locations are connected by a transportation network with no
cycles. Denote the tree that represents these locations as T , and define a distance measure
d between vertices (locations) on the tree. For each vertex v in T , define D(v, r) as the set
of all vertices (locations) which are less than r units away from v in terms of the distance
measure. Bidders are constrained to bid for sets that are of the form D(v, r) for some vertex
v and some number r. This could be a constraint or something they choose themselves to

4

minimize transportation costs. The constraint matrix of the corresponding problem will have
one column for each set of the form D(v, r) and one row for each vertex in the tree. Since
there are no cycles in the graph, D(v, r1) ⊆ D(v, r2) for r1 ≤ r2, and therefore the constraint
matrix cannot have any odd submatrix with exactly two ones in its rows and columns. Such
a matrix is balanced.

4.3 Perfect matrices

If the constraint matrix A is the vertex-clique adjacency matrix of a perfect graph, (2) has
an integer solution. A perfect graph is is a graph in which the chromatic number of every
induced subgraph equals the order of the largest clique of that subgraph. The smallest
number of colors needed to color a graph G is called its chromatic number. A clique is a
subset of vertices of an undirected graph such that every two distinct vertices in the clique
are adjacent.

A case in which perfect matrices can appear as constraint matrices for CAP is as follows.
Consider the case of balanced matrices, where there is a tree of locations with no cycles. If
bidders are constrained to bid for any connected subset of vertices, the resulting constraint
matrix would be perfect.

4.4 Graph Theoretic methods

There are situations where the extreme points are not necessarily all integral but the problem
can be solved in polynomial time. If A has at most two 1s in each column (i.e. not more
than two elements in each set of interest) then A can be interpreted as the incidence matrix
of a graph, with the rows representing vertices and the columns representing edges. CAP
then reduces to the maximum weight matching problem , which can be solved in polynomial
time.

4.5 Supermodular bidding functions

The previous methods are relaxations of the problem based on the composition of the sets.
One could also place restrictions on the bidding functions cj. A common restriction that is
placed is non-decreasing supermodularity. The cost function c is non-decreasing if cj(S) ≤
cj(T) ∀S ⊆ T . cj is supermodular if cj(S) + cj(T) ≤ cj(S ∩ T) + cj(S ∪ T).

Assume we have two supermodular functions g1 and g2, such that one class N1 of bidders
has bidding functions cj(.) = g1(.) for j ∈ N1, and another class N2 of bidders has bidding
functions cj(.) = g2(.) for j ∈ N2. Then the dual of the linear programming relaxation of
(1) can be written as

min Σi∈Mpi + Σj∈Nqi

s.t. Σi∈Spi + qj ≥ g1(S) ∀S ⊆M, j ∈ N1

s.t. Σi∈Spi + qj ≥ g2(S) ∀S ⊆M, j ∈ N2

pi, qj ≥ 0 ∀i ∈M, j ∈ N

5

This problem is an instance of the polymatroid-intersection problem and is polynomially
solvable. It has the property of being totally dual integral, which implies that its linear
programming dual (which is the linear programming relaxation of (1)) has an integer solution.
This method cannot be extended to 3 or more classes of supermodular bidding function, as
the problem of finding an integer optimal solution for 3 or more polymatroids is known to
be NP-hard. Supermodular functions arise in cases where there is an increasing return as
the sets grow larger.

5 Approximate methods

It is known that approximating the SPP to within a factor of m1/2−ε is NP-hard. However,
just as for exact solutions, good approximates can be achieved for special cases of the prob-
lem. A special case of the bidding function which yields good approximations is monotone
submodularity. Define

cS(j) = c(S ∪ {j})− c(S) (8)

as the marginal value of item j with respect to set S. c is monotone if cS(j) ≥ 0 ∀j and
c is submodular if cS(j) ≥ cT (j) whenever S ⊂ T . This corresponds to the property of
diminishing returns in economics, i.e. as the set grows larger the value added by new items
becomes smaller. CAP with a submodular bidding function is also known as the submodular
welfare problem. There area two kinds of submodular welfare problems, depending on the
oracle:

1. Value Oracle model: An oracle that can answer the question ”What is the value of
f(S)”?

2. Demand Oracle model: An oracle that can answer the question: ”Given an assign-
ment of prices to items p : [m]→ R, what is maxS(f(S)−

∑
j∈S pj”?

The demand oracle is more powerful than the value oracle model.

5.1 Submodular bidding functions with the value oracle model

Vondrák showed that one can achieve a 1 − 1
e

approximation of the optimal value for the
submodular welfare problem using a randomized continuous greedy algorithm for the value
oracle model [4]. The proof is presented here.

5.1.1 Preliminaries

Smooth submodular functions A discrete function f : 2X =⇒ R is submodular if
f(S ∩ T) + f(S ∪ T) ≤ f(S) + f(T) for any S, T ⊆ X. This definition can be extended to
continuous functions as:

F (x ∨ y) + F (x ∧ y) ≤ F (x) + F (y) (9)

where (x∨y)i = max{xi, yi} and (x∧y)i = min{xi, yi}. A continuous function can be said to
be monotone if F (x) ≤ F (y) when x ≤ y. The concept of smooth monotone submodularity

6

is now introduced.
Definition: A function F : [0, 1]X → R is smooth monotone submodular if

• F has second partial derivatives everywhere.

• δF
δyj
≥ 0 ∀j ∈ X everywhere (monotonicity)

• δ2F
δyjδyj

≤ 0 ∀i, j ∈ X everywhere (submodularity).

A smooth monotone submodular function can be obtained from a monotone submodular
function f : 2X → R+: For y ∈ [0, 1]X , let ŷ denote a random vector in {0, 1}X where each
coordinate is independently rounded to 1 with probability yj or 0 otherwise. Then define

F (y) = E[f(ŷ)] =
∑
R⊆X

f(R)
∏
i∈R

yi
∏
j /∈R

(1− yj) (10)

This function is linear in each variable yi, and is hence a multilinear polynomial. The first
derivative is

δF

δyj
= E[f(ŷ)|ŷj = 1]− E[f(ŷ)|ŷj = 0] (11)

Note that each coordinate yj is independent of all other coordinates. We also know that f is
monotonic, which implies that f(ŷ)|ŷj = 1 ≥ f(ŷ)|ŷj = 0. By these two properties, we can
assert that

δF

δyj
= E[f(ŷ)|ŷj = 1]− E[f(ŷ)|ŷj = 0] ≥ 0 (12)

For i 6= j, the second derivative is

δ2F

δyiδyj
= E[f(ŷ)|ŷj = 1, ŷi = 1]+E[f(ŷ)|ŷj = 0, ŷi = 0]−E[f(ŷ)|ŷj = 0, ŷi = 1]−E[f(ŷ)|ŷj = 1, ŷi = 0]

(13)
Note that (f(ŷ)|ŷj = 1, ŷi = 1) corresponds to the maximum value of y (for each yi) when
yi and yj are the variables, and (f(ŷ)|ŷj = 0, ŷi = 0) corresponds to the minimum value of
y when yi and yj are the variables. From 9 and the submodularity of f , we then determine
that the sum of the first two terms are smaller than the sum of the last two terms. Therefore

δ2F

δyiδyj
≤ 0 (14)

Since f is multilinear, when i = j
δ2F

δy2i
= 0. (15)

These are the properties of a smooth monotone submodular function, and therefore this
process can transform a monotone submodular discrete function into a smooth monotone
submodular continuous function.
Matroids and matroid polytopes: A finite matroid M is a pair (E, I), where E is a
finite set (called the ground set) and I is a family of subsets of E (called the independent
sets) with the following properties:

7

1. The empty set is independent, i.e., φ ∈ I.

2. Every subset of an independent set is independent, i.e., for each A′ ⊆ A ⊆ E, if A ∈ I
then A′ ∈ I. This is sometimes called the hereditary property, or the downward-closed
property.

3. If A and B are two independent sets (i.e., each set is independent) and A has more
elements than B, then there exists x ∈ A\B such that B∪{x} is in I. This is sometimes
called the augmentation property or the independent set exchange property.

For a matroid M , the matroid polytope of M is defined as

P (M) = conv{1I : I ∈ I} (16)

Another definition of matroid polytopes is

P (M) = {x ≥ 0 : ∀S ∈ X;
∑
j∈S

xj ≤ rM(S)} (17)

where rM(S) = max{|I| : I ⊆ S&I ∈ I} is the rank function of matroid M . Note that for
any x, such that 0 ≤ x ≤ y, y ∈ P =⇒ x ∈ P . This is called the down-monotone property.
Pipage rounding: Pipage rounding is a rounding technique, and it is used as a black box
to prove the result. The following lemma is stated without proof.
Lemma 0: There is a polynomial-time randomized algorithm, which, given a membership
oracle for matroid M = (X, I), a value oracle for a monotone submodular function f : 2X →
R+, and y ∈ P (M) returns an independent set S ∈ I of value f(S) ≥ (1 − o(1))F (y) =
(1− o(1))E[f(ŷ)] with high probability.

The o(1) term can be made polynomially small in n = |X|. This lemma tells us that
a function of a fraction y ∈ P (M) (where P (M) is the matroid polytope of M) can be
converted to an integral one without significant loss in the objective function. Therefore we
can optimize the continuous problem max{F (y) : y ∈ P (M)} instead of max{f(S) : S ∈ I},
and once we find the optimum solution x∗, we can convert it into the optimum set S∗ which
will solve the CAP.

5.1.2 The Submodular Welfare Problem

As before, let the set of n players be N , the set of m items M , and for each i ∈ N , let
ci : wN → R+ be the respective utility function which maps each set of objects to the
bidding values placed by the ith bidder. Define a new domain set X = N ×M . X contains
all possible allocations to each bidder. Note than any set S ⊆ X can be written uniquely as
S =

⋃
i∈N

({i} × Si), where Si is the set of items allocated to bidder i. Then define a function

f : 2X → R+:

f(S) =
∑
i∈N

ci(Si) (18)

Note that this similar to the objective function in the original formulation in 1, with the
difference that we make |N | copies of each item, one for each player. In order to impose

8

the constraint that in reality we can only use one copy of each item so that we are able to
allocate them to different bidders, define the paritition matroid M = (X, I):

I = {S ⊆ X|∀j; |S ∩ (N × {j})| ≤ 1} (19)

Note that this family satisfies the properties of a family of independent subsets.
Proof:

1. φ ∈ I, because ∀j; |φ ∩ (N × {j})| = 0 < 1

2. If A′ ⊆ A ⊆ E, and A ∈ I, then |A′ ∩ (N ×{j})| ≤ |A∩ (N ×{j})| ≤ 1, and therefore
A′ ∈ I.

3. Let (N×{j}) = Ej. If A and B are two independent sets (i.e., each set is independent)
and A has more elements than B, ∃Ej s.t. |Ej ∩ A| > |Ej ∩ B|. Then for any
x ∈ Ej ∩ (A\B), |(B ∪ x) ∩ Ej| ≤ |A ∩ Ej| ≤ 1.

There I satisfies all the properties of a family of independent sets, and M is a matroid.
QED.

The Submodular Welfare Problem is thus max{f(S) : S ∈ I}. Due to pipage rounding,
instead of solving this discrete problem we can solve the continuous optimization problem
max{F (y) : y ∈ N(M)}. Before describing the algorithm we will state and prove a lemma.
Lemma 1: Let OPT = maxS∈I f(S). For any y ∈ [0, 1]X and a random set R corresponding
to ŷ, with elements sampled independently according to yj. Then

OPT ≤ F (y) + max
I∈I

∑
j∈I

E[fR(t)(j)] (20)

Proof: Let OPT = f(O). Define

fR(S) = f(R ∪ S)− f(R) (21)

and
fR(j) = f(R ∪ {j})− f(R) (22)

By submodularity fR(j) ≥ 0. Therefore f(O) ≤ f(R) +
∑

j∈O fR(j) for any set R. Taking
the expectation over any random set R,

OPT ≤ E[f(R) +
∑
j∈O

fR(j)]

= F (y) + E[
∑
j∈O

fR(j)]

≤ F (y) + max
I∈I

E[fR(t)(j)]

QED.

9

5.1.3 Continuous Greedy Process

Given matroid M = (X, I), the continuous greedy algorithm as followed:

1. Let δ = 1
(n)2

where n = |X|. Start at t = 0 and y(0) = 0

2. Let R(t) be a random set containing each item j independently with probability yj(t).
For all j, estimate

ωij(t) = E[fR(t)(j)] (23)

by taking the average of n5 independent samples.

3. Let I(t) be a maximum weight independent set in M according to the weights ωj(t).
This can be found with a greedy algorithm. Let y(t+ δ) = y(t) + δ1I(t)

4. Increment t := t+ δ, if t < 1 go back to Step 2. Otherwise return y(1).

After this, we apply pipage rounding to y(1) to obtain the optimal solution. The optimality
of this algorithm is proved as follows:
Lemma 2: The fractional solution y found by the continuous greedy algorithm satisfies with
high probability

F (y) = E[f(ŷ)] ≥ (1− 1

e
− o(1))OPT (24)

Proof:
We start with F (y(0)) = 0 and analyze how much F (y(t)) increases for each step of the
algorithm. Consider a random set D(t), independent of R(t), that contains each item j inde-
pendently with probability ∆j(t) = yj(tδ)− yj(t). Therefore ∆(t) = y(t+ δ)− y(t) = δ1I(t).
This means that D(t) is a random subset of I(t) with each element appears independently
with probability δ.
From the definition in (10), F (y(t+δ)) = E[R(t+δ)]. R(t+δ) contains items independently
with probability y(t+δ) = y(t)+δ1I(t) = y(t)+∆(t). An item does NOT belong to R(t)∪D(t)
if it is in neither R(t) or D(t). Since R(t) and D(t) are independent, the probability that
a item does not belong in either is (1 − yj(t))(1 − ∆j(t)). Therefore R(t) ∪ D(t) contains
items independently with probabilities 1− (1−yj(t))(1−∆j(t)) = yj(t)+∆j(t)−yj(t)∆j(t).
This is smaller than the probabilities associated with R(t+ δ). Therefore, by monotonicity,
F (y(t+ δ)) = E[R(t+ δ)] ≥ E[R(t) ∪D(t)].
We thus have

F (y(t+ δ))− F (y) = E[f(R(t+ δ))]− E[f(R(t))]

≥ E[f(R(t) ∪D(t))− f(R(t))]

= E[fR(D(t))]

≥
∑
j

Pr[(D(t) = {j}]E[fR(t)(j))]

=
∑
j∈I(t)

δ(1− δ)|I(t)|−1E[fR(t)(j)]

≥ δ(1− nδ)
∑
j∈I(t)

E[fR(t)(j)]

10

I(t) is an independent set that maximizes
∑

j∈I ωj(t), which is an estimate of
∑

j∈I E[fR(t)(j)].

Since we used n5 samples, by the Chernoff bound,

P (ωj(t)− E[fR(t)(j)] ≥
OPT

n2
) ≤ exp(

−2OPT
2

n4

n5(b− a)2
) = exp(

−2OPT 2n

(b− a)2
) (25)

Hence the probability that the error in the estimate ωj(t) of E[fR(t)(j)] is more than
OPT/n2 is exponentially small in n since OPT ≥ maxR,j fR(j). I is the maximum sum of
these estimates. Hence, w.h.p., the error in computing I is at most n times the error in
computing each estimate, which gives OPT/n . Thus

F (y(t+ δ))− F (y) ≥ δ(1− nδ)(max
I∈I

∑
j∈I

E[fR(t)(j)]−OPT/n)

≥ δ(1− nδ)(OPT − F (y(t))−OPT/n) (from Lemma 1)

= δ(1− 1/n)(OPT − F (y(t))−OPT/n) (since δ =
1

n2
)

= δ(˜OPT − F (y(t)) (where ˜OPT = (1− 2/n)OPT)

We subtract ˜OPT from both sides and rearrange this to get

(1− δ)(˜OPT − F (y(t))) ≥ ˜OPT − F (y(t+ δ)) (26)

Since F (y(0)) = 0, by induction we get

˜OPT − F (y(kδ)) ≤ (1− δ)k ˜OPT (27)

For k = 1
δ

˜OPT − F (y(kδ)) ≤ (1− δ)
1
δ ˜OPT ≤ 1

e
˜OPT (28)

F (y(1)) ≥ (1− 2/n)(1− 1

e
)OPT ≥ (1− 1

e
− o(1))OPT (29)

Finally, using pipage rounding (Lemma 0) we can convert the y we obtained here into an
integer solution corresponding to an indepedent set.

5.1.4 Continuous Greedy Process for submodular maximization

Denote items by j and bidders by i. The algorithm is as follows:

1. Let δ = 1
(mn)2

. Start at t = 0 and yij = 0 ∀i, j

2. Let Ri(t) be a random set containing each item j independently with probability yj(t).
For all i, j, estimate the expected marginal profit of player i from item j:

ωij(t) = E[ωi(Ri(t) + j)− ωi(Ri(t))] (30)

by taking the average of (mn)5 independent samples.

11

3. For each j, let ij(t) = arg maxi ωij(t) be the preferred player for item j. Set yij(t+δ) =
yij(t) + δ for the preferred player i = ij(t) and yij(t+ δ) = yij otherwise.

4. Increment t := t+ δ, if t < 1 go back to Step 2.

5. Allocate each item independently with probability yij(t) to each player i.

By lemma 2, the continuous greedy algorithm gives a (1 − 1/e − o(1)) approximation in
expectation for the submodular welfare problem in the value oracle model.

5.2 Submodular Welfare Problems for the Demand Oracle model

Dobzinksi and Schapira proved that one can achieve a e
e−1 approximation for submodular

bidders with a demand oracle. We first define XOS valuations [3]. A valuation is called
additive if ∀S ⊆ M , c(S) =

∑
j∈S c({j}). An additive valuation is completely defined by

the values assigned to the items. We can thus represent additive valuations in the following
clause form:

(x1 : c1 ∨ x2 : c2 ∨ · · · ∨ xm : cm) (31)

XOS valuation: A valuation is c said to be XOS if there is a set of additive valuations
{a1, a2...at} such that c(S) = maxk{ak(S)} for all S ⊆ M . XOS valuations can be denoted
by

(x1 : a1({1})∨x2 : a1({2})∨· · ·∨xm : a1({m})⊕· · ·⊕(x1 : at({1})∨x2 : at({2})∨· · ·∨xm : at({m})
(32)

Note that the class of XOS valuations strictly contains the class of submodular valuations.
The clause ai which gives the maximum value c(S) = maxk{ak(S)} is called the maximizing
clause. An XOS oracle is an oracle that when given a bundle S can return the maximizing
clause for S for a given valuation c. In the context of auctions, each bidder has a set of
valuations.

The algorithm first solves the linear relaxation of the problem and then performs ran-
domized rounding to allocate sets. The input to the algorithm are the n valuations vi, for
each of which we are given a demand oracle and an XOS oracle. The output allocation
T1, T2...Tn is a 1

1−(1− 1
n
)n
< e

e−1 approximation to the optimal allocation. The algorithm is as

follows:

1. First solve the linear relaxation of the problem:

max
∑
i,S

xi,Sci(S)

s.t.
∑
i,S|j∈S

xi,S ≤ 1 ∀j ∈M

∑
S

xi,S ≤ 1 ∀i

S : xi,S ≥ 0 ∀i

12

The first constraint ensures each item appears only once in each allocation for a bidder.
The second constraint ensures that for each bidder only one set of items is allocated.
The third constraint ensures that the allocations are non-negative.
The linear program has exponentially many variables, but can be solved in polynomial
time. To see this, we construct the dual of this program. Define the dual variable
y ∈ RN+1. Let xi,S be a flattened row vector of dimension (N.2|M |)× 1. Define

A : RN×(N.2|M|)|aij =

{
1 if i ∈ Sj
0 otherwise

(33)

By this definition, we are implicitly allocating a copy of each set to each player, and
if aij = 1 for j = kN , ail will also be equal to 1 for j ≤ l ≤ j + N . We can now write
the dual as

min 1T(N+1)×1y

s.t. y ≥ 0

[AT1(N.2|M|)×1]y ≥ c

This problem can be solved using the ellipsoid method. The ellipsoid algorithm requires
a separation oracle, and it has been shown that a separation oracle can be constructed
from the demand oracle.

2. Use randomized rounding to find an initial allocation S1, S2 . . . Sn.
For each bidder i, independently choose a set Si with probability xi,S, and choose the
empty set with probability 1−

∑
S xi,S

3. Let (x1 : pi1 ∨ . . . xm : pim) be the maximizing clause for Si in ci. When the valuations
are submodular, a demand oracle can simulate an XOS oracle [2] and therefore the
maximizing clause can be found for each Si.

4. Allocate the jth item to bidder i for which pij ≥ pi
′
j ∀i′ ∈ N .

Proof of Optimality: The allocation is clearly feasible. Let the maximizing clause for
S in ci be (x1 : pi1 ∨ . . . xm : pim) for every bidder i and every set of items S. Then

OPT =
∑
i,S

xi,Svi(S) =
∑
i,S

xi,S
∑
j

p
(i,S)
j =

∑
j

(
∑
i,S

xi,Sp
(i,S)
j) (34)

Let Qj be the random variable maxi∈N{pij} that we obtain after randomized rounding. Let
ALG be the random variable

∑
i ci(Ti) after the algorithm is finished. ALG ≥

∑
j Qj because

we are dealing with an XOS problem.
Lemma 4 : For every item j,

E[Qj] ≥ (1− (1− 1

n
)n)(

∑
i,S

xi,Sp
(i,S)
j) (35)

13

Proof: Consider an item j. Denote Xj
i as the probability that bidder i gets item j in

the initial allocation. We have
Xj
i =

∑
S|j∈S

xi,S (36)

because the probability that S is assigned to bidder i is xi,S. Denote V j
i as the expected

value of j for bidder i, conditioned on bidder i being allocated item j in the initial allocation.

V j
i =

∑
S|j∈S xi,Sp

(i,S)
j

Xj
i

(37)

Order the bidders in decreasing order of V j
i , and without loss of generality assume that the

ordering is 1, 2 . . . n. Assign item j to the bidder who has the highest expected value of j
(i.e., the highest bidder in the order of V j

i for a particular j.) Denote the expected value of j
in this allocation as E[Tj]. Note that E[Qj] ≥ E[Tj], because while for Qj we are taking the
expectation over the max of the valuations, for Tj we are taking the max over the expectation
of the valuations. So to lower bound E[Qj], we will find a lower bound for E[Tj]. Writing
out the expression for E[Tj],

E[Tj] = Xj
1V

j
1 + (1−Xj

1)Xj
2V

j
2 + · · ·+ (1−Xj

1)(1−Xj
2) . . . (1−Xj

n−1)X
j
nV

j
n (38)

The first constraint of the LP dictates that
∑

iX
j
i ≤ 1. Therefore for 1 ≤ k ≤ n, we

have

1− (1−Xj
1)(1−Xj

2) . . . (1−Xj
k) ≥ (1−

∑k
i=1X

j
i

k
)k

≥ (1− 1

k
)k

k∑
i=1

Xj
i

≥ (1− 1

n
)n

k∑
i=1

Xj
i

The last two inequalities are results from calculus. Define V j
n+1 = 0 and multiply both sides

of the above inequality with the quantity (V j
k − V

j
k+1) (which we know is positive because of

the ranking) and sum both sides over all k. On the left hand side, we get∑
k

1− (1−Xj
1) . . . (1−Xj

k)(V
j
k − V

j
k+1)

= Xj
1V

j
1 +

n∑
k=2

Xj
k[(1−X

j
1) . . . (1−Xj

k−1)]V
j
k

= E[Tj]

On the right hand side,

∑
k

(1− 1

n
)n

k∑
i=1

Xj
i (V

j
k − V

j
k+1) =

∑
k

(1− 1

n
)nV j

kX
j
k

14

Therefore

E[Tj] ≥ (1− 1

n
)n

∑
i

V j
i X

j
i

= (1− 1

n
)n

∑
S|j∈S

xi,Sp
(i,S)
j

By linearity of expectation

E[ALG] ≥
∑
j

E[Qj]

≥
∑
j

(1− (1− 1

n
)n)

∑
S|j∈S

xi,Sp
(i,S)
j

= (1− (1− 1

n
)n)OPT

QED.

6 Conclusion

In this project, a number of techniques to solve combinatorial auction problems have been
reviewed. We started with exact methods, then described special cases of the constraints that
allow exact polynomial solutions, also including where possible cases in real-life applications
where such special cases arise, and then described some approximate methods. For the
approximate algorithms, we studied the special case of submodular welfare, and showed two
algorithms that achieve near optimal performance for two different oracle models.

References

[1] Sven De Vries and Rakesh V Vohra. “Combinatorial auctions: A survey”. In: INFORMS
Journal on computing 15.3 (2003), pp. 284–309.

[2] Shahar Dobzinski, Noam Nisan, and Michael Schapira. “Approximation algorithms for
combinatorial auctions with complement-free bidders”. In: Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing. 2005, pp. 610–618.

[3] Shahar Dobzinski and Michael Schapira. “An improved approximation algorithm for
combinatorial auctions with submodular bidders”. In: Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm. 2006, pp. 1064–1073.

[4] Jan Vondrák. “Optimal approximation for the submodular welfare problem in the value
oracle model”. In: Proceedings of the fortieth annual ACM symposium on Theory of
computing. 2008, pp. 67–74.

15

