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1 Introduction

1.1 Multi-channel P2P Live Streaming

This system involves people/devices live streaming various channel data(J) from different servers. The
server bandwidth, in itself, is insufficient to satisfy the streaming-rate for all the users viewing the channel.
To overcome this issue, each user also redistributes the data it receives into the system thereby increasing
the effective bandwidth of each channel. Viewing and uploading are strictly decoupled in this model, which
was introduced in [1]. All allocations are implemented with the aim of maximizing Probability of Univer-
sal Streaming (PUS) which gives the probability that all users of a channel get sufficient bandwidth for
uninterrupted viewing.

1.2 User Distribution

The system dynamics involves two components: peer churn and channel churn. Channel churn refers to
users jumping between each live stream, staying in each channel for a random duration (µ−1j ). Peer churn
refers to devices entering and exiting the system. This is true in the case of devices like laptops, PCs. Devices
like TVs and set-top boxes can be considered as always on.
Since channel churn happens on a faster time scale as compared to peer churn, we first consider a closed
system with a fixed number of users(n). Modelling this system as a closed Jackson Network with a transition
probability matrix of P, we get :

λ = PTλ

ρj = λj/µj
J∑
j=1

ρj = 1

P (M1 = m1, . . . ,MJ = mJ) = n!
ρm1
1

m1!
. . .

ρmJ1

mJ !
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Considering an open system with peer churn with arrival rate of ν and departing rate of pi0, we get :

λ = ν + P T (I−Po)λ

Po = diag([pi0])

ρj = λj/µj

P (M1 = m1, ..MJ = mJ) =

J∏
j=1

ρ
mj
j

mj !
e−ρj

1.3 Universal Streaming

The resource index for channel j is defined by

σj(Mj) =
bj − oj
dj(Mj)

(1)

where bj is the total upload bandwidth available for channel j, dj(Mj) is the total bandwidth required to
achieve universal streaming in channel j given the number of viewers to be Mj , and oj is VUD’s bandwidth
overhead for channel j. The probability of universal streaming for channel j is given by:

PUj = P (σj(Mj) ≥ 1) (2)

The probability of system-wide universal streaming is given by:

PS = P (σj(Mj) ≥ 1, j = 1 . . . J) (3)

1.4 Recommender Systems

Recommenders are used to shape the user’s preferences, thereby modifying the channel churn matrix.
They have been used, traditionally, in cached systems to decrease the latency of the system. We consider
the possibility of tuning the TPM to obtain a user distribution which can increase the Universal Streaming
probability. The optimal recommender must increase the PUS while ensuring that the recommendations are
actually reasonable, by considering the similarity between the channels.

2 Load Balancing

The first approach we take towards finding an optimal recommender is to solve the problem in two steps.
In the first step, we will compute an optimal load distribution ρ∗ over the network. More concretely, we will
solve the problem

ρ∗ = arg maxPS(ρ) (4)

Then, we may employ several strategies to find the optimal recommender. For example, if we are only
interested in achieving the optimal load distribution on a closed network, we solve the feasibility problem
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find P

s.t. λ∗ = PTλ∗

λ∗i = ρ∗iµi

Pii = 0

Pij ≥ 0∑
j

Pij = 1 (5)

While this is a linear feasibility problem, it may

• Lead to trivial solutions.

• Be infeasible.

The reason we obtain trivial solutions is that we accept any recommender that achieves the load distri-
bution. In practice, however, users prefer recommenders that suggest content similar to the one they have
just watched.

Assume a similarity matrix S where Sij encodes the similarity between channels i and j. We can then
search for recommenders that suggest similar content. This formulation will be discussed later. Our first
focus will be on finding the optimal load distribution.

2.1 Optimal Load Balancing in a Closed Network

Consider the expression for system-wide universal streaming. Based on the system parameters (allocation
of uploaders to channels and their upload rates), it can be shown that the condition for universal streaming
corresponds to having less than a maximum number of customers in each channe. Let δ be the vector of
such maximum admissible users in each channel. We can then define the admissible region

Mδ = {m | 0 ≤m ≤ δ,1Tm = n} (6)

For simplicity, let |Mδ| = Mδ and Mδ = {mi | i = 1 . . .Mδ}.

PS =

Mδ∑
i=1

(
n

mi

) J∏
j=1

ρ
mij
j (7)

To find the optimal load distribution is to solve the following optimization problem.

max

Mδ∑
i=1

(
n

mi

) J∏
j=1

ρ
mij
j

s.t. 1Tρ = 1

ρ ≥ 0 (8)
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For now, let us ignore the constraint ρ ≥ 0. Then, we have an equality constrained maximization
problem. This can be solved using the Lagrange multiplier method. The Lagrange function is given by

L(ρ, η) =

Mδ∑
i=1

(
n

mi

) J∏
j=1

ρ
mij
j + η

 J∑
j=1

ρj − 1

 (9)

The optimal solution is among the saddle points of the Lagrangian. It can be shown that ρ∗ is a saddle
point iff it satisfies

ρ∗k =
1∑Mδ

i=1

(
n
mi

)∏J
j=1 ρ

∗mij
j

Mδ∑
i=1

(
n

mi

) J∏
j=1

ρ
∗mij
j

(mik

n

)
(10)

1. We can interpret the right-hand-side of the optimality condition in (10) as the average fraction of
customers in channel k conditioned on being an admissible configuration, and the left-hand-side is the
unconditional average fraction.

2. The condition in (10) is a fixed-point equation. Since the function is continuous and maps the J-
dimensional probability simplex to itself, Brouwer fixed point theorem tells us that a solution exists.
However, note that the solution may not be unique. In other words, (10) is a necessary condition for
optimality, not sufficient.

3. We can use fixed-point iteration to solve for ρ∗. This may work well in practice but we have not shown
that the function is contractive. Therefore, the fixed-point iteration may not always converge.

Can we solve a (potentially) non-convex problem that guarantees optimality? Yes! To do so, we will use
the result from Pascual et al. [2] to derive the following optimization that acts as a dual problem.

miny −
Mδ∑
i=1

yi log

(
n

mi

)
+

Mδ∑
i=1

yi log yi −
J∑
i=1

zi log zi

s.t. z = MTy

y ≥ 0

1Ty = 1 (11)

The optimal solution of the “dual” problem is related to the optimal solution of the primal as

ρ∗ =
1

n
z∗ (12)

2.2 Optimal Load Balancing in an Open Network

Given a vector of maximum admissible users δ, the probability of system-wide universal streaming in an
open network can be expressed as

PS =
∑

0≤m≤δ

J∏
j=1

ρ
mj
j

mj !
exp(−ρj) =

J∏
j=1

 ∑
0≤mj≤δj

ρj
mj !

exp(−ρj)

 (13)
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Then, the optimal load distribution is found by solving the following optimization problem

maxρ

J∏
j=1

 ∑
0≤mj≤δj

ρ
mj
j

mj !
exp(−ρj)


s.t. ρ ≥ 0 (14)

Clearly, the product form of the distribution allows us to separate the problem in (14) into J problems
of the form

maxρj
∑

0≤mj≤δj

ρ
mj
j

mj !
exp(−ρj)

s.t. ρj ≥ 0 (15)

Note that the first term of the summation corresponding tomj = 0 becomes exp(−ρj), which is maximized
by setting ρj = 0. This is an artefact of the fact that limx→0 x

a exp(−x) = 1(a = 0). To avoid this trivial
solution, we will instead maximize the following lower bound to PUj

maxρj
∑

1≤mj≤δj

ρ
mj
j

mj !
exp(−ρj)

s.t. ρj ≥ 0 (16)

Note that each term of the summation is quasi-concave, but the sum may not be quasiconcave. Since
the constraint set of this problem is simple, we can solve this directly by setting the gradient to zero.
Differentiating with respect to ρj ,

dPUj
dρj

=
∑

1≤mj≤δj

mj

mj !
ρ
mj−1
j exp(−ρj)−

1

mj !
ρ
mj
j exp(−ρj)

= exp(−ρj)
∑

1≤mj≤δj

1

mj !

(
mjρ

mj−1
j − ρmjj

)

= exp(−ρj)
∑

1≤mj≤δj

(
ρ
mj−1
j

(mj − 1)!
−
ρ
mj
j

mj !

)

= exp(−ρj)

(
1−

ρ
δj
j

δj !

)
(17)

The first observation we can make is that PUj is a quasiconcave function of ρj . Further, the optimal
load (with respect to the lower-bound) is given by

ρ∗j = δj

√
δj ! ≈ 0.3755δj + 0.55 (18)

Therefore,
ρ∗ ≈ 0.3755 · δ + 0.55 (19)

We observe that the optimal load grows (approx.) linearly with the maximum admissible number of cus-
tomers. However, it is important to note that because we have not included the recommender in this
optimization problem, this load may not be achievable! Increasing δ indefinitely will increases ρ∗ indef-
initely, while the flow into the system is fixed at ν. Similarly, decreasing δ may decrease ρ∗ below the
minimum load [νj/µj ]
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2.3 Restricting the Domain to Achievable Loads

As we observed in the case of open network, the “optimal” load may not be achievable. Restricting the
search space to achievable loads is equivalent to searching on the set

{ρ | ρj = λj/µj ,∃Ps.t.λ = ν + (I−Po)Pλ}.

Adding this as a constraint to the optimization problem in (14),

maxρ

J∏
j=1

 ∑
1≤mj≤δj

ρ
mj
j

mj !
exp(−ρj)


s.t. λ ≥ 0

ρj = λj/µj

λ = ν + PT (I−Po)λ

Pii = 0

Pij ≥ 0∑
j

Pij = 1 (20)

This problem is non-convex due to the presence of PT (I−Po)λ, which is a bilinear term. Let y =
PT (I−Po)λ. From the structure of P, we see that the existence of P that if

yi =
∑
j 6=i

Pji(1− pjo)λj (21)

Pii = 0

Pij ≥ 0∑
j

Pij = 1 (22)

then
0 ≤ yj ≤

∑
k 6=j

(1− pko)λk (23)

Therefore, we can eliminate P from the optimization problem, eliminating the bilinear constraint in the
process, and write a relaxed version of the problem as

maxρ

J∏
j=1

 ∑
1≤mj≤δj

ρ
mj
j

mj !
exp(−ρj)


s.t. λ ≥ 0

ρj = λj/µj

νj ≤ λj ≤ νj +
∑
k 6=j

(1− pko)λk, ∀j = 1 . . . J (24)
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While this relaxation may not be tight, the constraint set is now a polyhedron. While each PUj is
quasi-concave, the product may not be quasi-concave in general. However, we can show a stronger result
- the objective function is log-concave. Therefore, the problem in (24) involves maximizing a log-concave
function over a convex set, which can be solved efficiently as a convex program.

3 Recommender objective for closed networks

As defined in Section 2, let S be the J × J channel similarity matrix, and let P be the recommendation
matrix, i.e., Pij is the transition probability from channel i to j as controlled by the recommender. We define
the recommender objective as the average channel similarity observed by a user, i.e.,

S(ρ,P) =

J∑
i=1

Pr(customer in channel i)

J∑
j=1

PijSij (25)

=

J∑
i=1

ρi∑J
k=1 ρk

J∑
j=1

PijSij (26)

=

J∑
i=1

ρi

J∑
j=1

PijSij (27)

The load of each channel j, ρj , is defined as ρj = λj/µj , where 1
µj

is the expected amount of time a peer

continuously views channel j. λ is the vector that satisfies the flow conservation equations

λ = PTλ (28)

This “constraint” on λ,P is not linear or convex. However, with a change of variables

li = log λi (29)

yij = logPTij (30)

the equation ∑
j

PTijλj = λi (31)

can be written as ∑
j,j 6=i

exp (yij + lj − li) = 1 (32)

log

∑
j 6=i

exp (yij + lj − li)

 = 0 (33)

for i = 1 . . . .J . logsumexp is a convex function, but the constraint is an equality, not an inequality, and
hence the feasible set is not convex.
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Let xi = log ρi. Then the objective becomes

max
x,y

log

 J∑
i=1

J∑
j=1,j 6=i

exp (xi + yij + logSij)

 (34)

s.t. log

∑
j,j 6=i

exp (yij + xj − xi − logµi + logµj)

 = 0 ∀i = 1 . . . J

∑
i

exp(xi) = 1∑
i

exp(yij) = 1 ∀j = 1 . . . J

The first constraint is an equality over a convex function and will have to relaxed to make the feasible set
convex, but we can show that relaxing the second and third constraint will not change the problem. The
proof is shown in appendix D.

4 Asymptotic Analysis for Closed Networks

Our goal is to determine under what conditions PS is high for a system when the number of (uploading)
peers approaches infinity. Let the uploading rate for each peer assigned to channel j be uji , i = 1 . . . nj , rj
be the streaming rate of channel j, and vj be the server rate for channel j. We have

bj = vj +

nj∑
i=1

uji (35)

oj = njrj (36)

dj(Mj) = Mjrj (37)

4.1 Homogenous systems

We first consider the case when uji = u for all peers, with u > rj for j = 1 . . . .J . Let nj = Kjn, where
Kj is a fraction such that

∑
j Kj = 1. As n→∞, we have

lim
n→∞

σj(Mj) = lim
n→∞

bj − oj
dj(Mj)

(38)

= lim
n→∞

vj +Kjnu−Kjnrj
Mjrj

= lim
n→∞

Kj(u− rj)
Mj

n rj

As n→∞,
Mj

n → ρj (the load on the channel). Hence

lim
n→∞

σj(Mj) =
Kj(u− rj)

ρjrj
(39)
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σj(Mj) ≥ 1 iff
Kj(u−rj)
ρjrj

≥ 1, which happens when

Kj ≥
ρjrj

(u− rj)
(40)

Define
αj =

∑
j

ρjrj
(u− rj)

(41)

If αj ≤ 1, then for any K1, . . .KJ with Kj ≥ ρjrj
(u−rj) and

∑
j Kj = 1, the probability of universal streaming

(PS) goes to 1. In this case, we can define an optimization problem such that PS is 1 but the recommender
objective is maximized, with the substitution of ρ = exp(x).

max
x,y

log

 J∑
i=1

J∑
j=1

exp (xi + yij + logSij)

 (42)

s.t. log

∑
j

exp (yij + xj − xi + log µj − logµi)

 = 0 ∀i = 1 . . . J

∑
i

exp(xi) = 1

∑
j

exp(xj)rj
(u− rj)

≤ 1

∑
i

exp(yij) = 1 ∀j = 1 . . . J

When the convex equalities are relaxed to inequalities, we can solve the relaxed problem as a convex
problem.

4.2 Heterogeneous systems

We now consider the case where the upload rates of all the users are not the same. We consider two
groups of peers with a separate upload rate for each. Let f be the fraction of low-upload rate peers, and
1 − f be the fraction of high-upload rate peers. Let nlj = Kl

jn be the fraction of low upload rate peers

allocated to channel j, and nhj = Kh
j n be the fraction of high upload rate peers allocated to channel j.

bj = vj +Kl
jnu

l +Kh
j nu

h (43)

oj = (Kl
jn+Kh

j n)rj (44)

lim
n→∞

σj(Mj) = lim
n→∞

bj − oj
dj(Mj)

(45)

= lim
n→∞

vj +Kl
jnu

l +Kh
j nu

h − (Kl
jn+Kh

j n)rj

Mjrj

=
Kl
j(u

l − rj) +Kh
j (uh − rj)

ρjrj
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Therefore σj(Mj) ≥ 1 iff Kl
j(u

l − rj) + Kl
j(u

h − rj) ≥ ρjrj for all j = 1 . . . .J . This can be heuristically
converted to an optimization problem as

max
Kl,Kh,ρ

min
j
yKl

j(u
l − rj) +Kh

j (uh − rj)− ρjrj (46)

One way to approach this problem is to consider it as a two-stage process. In the first stage, we optimize
the load such that the allocator system is optimal, and in the second stage we optimize the recommender
system under the constraint that the eigenvector of the transition probability matrix corresponds to the load
obtained in the first stage.

max
Kh,Kl,ρ

Z (47)

s.t. Z ≤ min
j
ξjK

l
j + ζjK

h
j − rjρj

1Tρ = 1

ρ ≥ 0

1TKh = 1− f
1TKl = f

After we find the optimal ρ for this problem, we can then optimize the recommender using (34).

These stages are linear optimization problems by themselves and can easily be solved. If we aim to jointly
optimize the recommender system and the allocation system, we have the following optimization

max Z + ν log

 J∑
i=1

J∑
j=1

exp (xi + yij + logSij)

 (48)

s.t. Z ≤ min
j
ξjK

l
j + ζjK

h
j − rjρj

log

∑
j

exp (yij + xj − xi + logµi − logµj)

 = 0 ∀i = 1 . . . J

∑
i

exp(xi) = 1∑
i

exp(yij) = 1 for j = 1 . . . J

1TKh = 1− f
1TKl = f

Once again, relaxing the logsumexp constraint and the constraint on the 1T exp(x) reduces this to a
convex program.

5 Recommender systems for Open Networks

The primary objective for recommenders in an open network is now slightly different because ρ is no
longer normalized to 1, i.e.

max
ρ,P

J∑
i=1

J∑
j=1

ρi∑J
k=1 ρk

PijSij (49)
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To deal with this, we introduce another variable

ρ̃ =
ρ∑J
k=1 ρk

(50)

For the both the homogenous and the heterogenous case
Mj

n → ρ̃j , and hence ρ̃ can directly be used in the
constraint equations in place of ρ. The constraints on the load vector ρ and the arrival rate vector λ are
different. Specifically,

λ = ν + PT(I−P0)λ (51)

where P is the channel churn matrix and νi is the exogenous arrival rate for channel i, and P0 = diag([pi0])
where pi0 is the exit probability from state i. pi0 and ν are known quantities. The constraint can be written
elementwise as

λi = νi +
∑
j 6=i

Pji(1− pj0)λj (52)

Substituting li = log(λi) and yij = log(Pji) gives

log

exp (log νi − li) +
∑
j 6=i

exp (yij + lj + log(1− pj0))

 = 0 (53)

This is a logsumexp expression, similar to what we obtained in the closed network case.

6 Numerical results

6.1 Fixed Point Equation in Closed networks

In this evaluation, we consider 20 users, 6 channels. The maximum limit on users for each channel is given
by [9,6,5,9,7,8] respectively. We start with an initial distribution having all the load at the first channel. We
show a plot on the variation of the objective function value with the iteration count.

Figure 1: Variation of Objective value
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6.2 Relaxed Solution to the Open Network

In this evaluation we compare the results obtained by the domain restricted problem and it’s relaxed
version. For this, we considered a system with 6 channels, an arrival rate of [0.03,0.03,0.03,0.03,1e-3,0.03], a
mean staying time of [0.54,0.55,1,0.52,0.55,0.51], and a maximum user limit of [9,6,5,9,7,8].
Running the numerical algorithm shows that the obtained objective value of the relaxed version is within
8% of the actual solution, and the obtained user load is within 11%. This shows that we can use the relaxed
problem formulation to get a close enough solution at much lower computational complexity.

6.3 Asymptotic homogeneous systems

Here we compare the results between joint optimization of PUS and similarity, and step-wise optimization
of the load and then the similarity matrix. The objective value is a measure of correlation between the
recommender and the similarity matrix. We consider a 6 channel scenario with channel rates approximately
half of the upload rate.

Channel Rates Similarity matrix Joint Objective Step-wise Objective

R1 S1 1.75 1.51
R1 S2 1.67 1.16
R1 S3 1.19 1.64
R1 S4 1.88 1.63
R1 S5 0.82 1.79

R2 S1 0.81 1.30
R2 S2 1.09 1.41
R2 S3 1.57 1.07
R2 S4 1.74 0.52
R2 S5 1.40 1.50

R3 S1 1.68 1.30
R3 S2 2.36 1.41
R3 S3 1.95 1.07
R3 S4 1.77 0.52
R3 S5 1.10 1.50

While it look possible that sometimes the step-wise solver can give a better correlation, the load distri-
bution obtained from the step-wise optimizer is an edge-case where all the load is on a single channel which
has the lowest streaming rate. This scenario will not happen in practice.
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Appendix A Deriving the Fixed Point Condition

Recall that the Lagrange function is given by

L(ρ, η) =

Mδ∑
i=1

(
n

mi

) J∏
j=1

ρ
mij
j + η

 J∑
j=1

ρj − 1

 (54)

The optimal solution is among the saddle points of the Lagrangian. To find the saddle point, we will set
the derivatives to zero. Computing the derivatives,

∂L

∂ρk
= η +

Mδ∑
i=1

(
n

mi

) J∏
j=1

ρ
mij
j mikρ

−1
k (55)

Therefore, at a saddle point ρ∗, η∗,

η∗ +

Mδ∑
i=1

(
n

mi

) J∏
j=1

ρ
∗mij
j mikρ

∗−1
k = 0 (56)

ρ∗k = −
Mδ∑
i=1

mik

η∗

(
n

mi

) J∏
j=1

ρ
∗mij
j (57)

Enforcing the constraint that ρ∗k sum to 1, we get

ρ∗k =

∑Mδ

i=1mik

(
n
mi

)∏J
j=1 ρ

∗mij
j∑J

k=1mik

∑Mδ

i=1

(
n
mi

)∏J
j=1 ρ

∗mij
j

(58)

=
1∑Mδ

i=1

(
n
mi

)∏J
j=1 ρ

∗mij
j

Mδ∑
i=1

(
n

mi

) J∏
j=1

ρ
∗mij
j

(mik

n

)
(59)

Appendix B Deriving the Dual-like Problem for Universal Stream-
ing in Closed Networks

As mentioned earlier, we will use the result from Pascual et al. [2].

Consider the maximization problem

max g0(x)

s.t. gk(x) ≤ 1, k = 1 . . . p

xj > 0, j = 1 . . . d (60)

where

gk(x) =
∑
i∈J[k]

ci

d∏
j=1

x
aij
j (61)
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where

J [k] =

{∑
l<k

nl + 1,
∑
l<k

nl + 2,
∑
l<k

nl + nk

}
. (62)

The following min-max problem acts as a “dual” program to (60).

minymaxz ν(y, z) =

n0∏
i=1

(ci/yi)
−yi

∏
i>n0

(ci/zi)
zi

p∏
k=1

Sk(z)Sk(z)

s.t. −
n0∑
i=1

yiaij +
∑
i>n0

ziaij = 0, j = 1 . . . d

zi ≥ 0, i ∈ J [k], k = 1 . . . p

y ≥ 0

1Ty = 1 (63)

where
Sk(z) =

∑
i∈J[k]

zi (64)

Note: A posynomial optimization problem is said to be superconsistent if there exists a feasible point
that satisfies all inequality constraints strictly. If the maximization problem in (60) is superconsistent, then
the minmax problem in (63) is “tight”, i.e.,

{max
x

g0(x)}−1 = g0(x∗)−1 = inf
y

sup
z
ν(y, z) = ν(y∗, z∗) (65)

and the optimal points satisfy the relationship

ci

d∏
j=1

(
x∗j
)aij

=

{
y∗i /ν(y∗, z∗) i ∈ J [0]

y∗i /Sk(y∗) i ∈ J [k], k = 1 . . . p
(66)

Converting a nice log-sum-exp to such a min-max problem may not seem appealing at first. However,
in our case, we will see that this min-max problem simplifies greatly. We begin by making the following
observations by comparing our maximization problem to the general one in (60),

1. p = 1

2. d = J

3. n0 = Mδ

4. ci =

{
log
(
n
mi

)
i = 1 . . .Mδ

1 i = Mδ + 1 . . .Mδ + J

5. Denoting A = [aij ] and M = [mij ], A =

[
M
IJ

]
, where A ∈ R(Mδ+J)×J ,M ∈ RMδ×J , and IJ denotes

the J × J identity matrix.
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From item 5 in the list above, we observe that A has full column rank. Therefore, the linear equality
constraint of the min-max problem in (63) has a unique solution. Substituting A, the linear equality
constraint simplifies to

z = MTy (67)

Since y ≥ 0 and mij ≥ 0, z ≥ 0. Therefore, MTy is feasible and the constraint set of the maximization
part reduces to one point. Therefore, the dual reduces to the following minimization problem.

miny

Mz∏
i=1

(ci/yi)
−yi

J∏
i=1

(1/zi)
zi (1T z)1

T z

s.t. z = MTy

y ≥ 0

1Ty = 1 (68)

We make one final observation to simplify the problem further.

1T z = 1T

(
Mδ∑
i=1

yimi

)
=

Mδ∑
i=1

yi
(
1Tmi

)
= n

Mδ∑
i=1

yi = n (69)

This eliminates an exponent term from (68) leading to the equivalent minimization problem

miny

Mδ∏
i=1

(ci/yi)
−yi

J∏
i=1

(1/zi)
zi

s.t. z = MTy

y ≥ 0

1Ty = 1 (70)

Equivalently, we can minimize the log of the objective, i.e.,

miny −
Mδ∑
i=1

yi log

(
n

mi

)
+

Mδ∑
i=1

yi log yi −
J∑
i=1

zi log zi

s.t. z = MTy

y ≥ 0

1Ty = 1 (71)

Clearly, our primal problem (8) is superconsistent, since (1/J)1 is feasible. Therefore, the dual problem
is tight, and we can use the relationship in (66) to relate the optimal values. Since p = 1, let us choose
k = 1, which leads to ci = 1 and aij = 1(i−Mδ = j). Using the fact that 1T z = n,

ρ∗ =
1

n
z∗ (72)
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Appendix C Deriving Log-Concavity of the Universal Streaming
Objective for Open Networks

To prove this, we first show that each term of the product is log-concave. Let gj(ρj) = logPUj(ρj).
Then,

g′j(ρj) =
PU ′j(ρj)

PUj(ρj)

=
1

PUj(ρj)

∑
1≤mj≤δj

(
ρ
mj−1
j

(mj − 1)!
exp(−ρj)−

ρ
mj
j

mj !
exp(−ρj)

)

=
1− ρ

δj
j

δj !∑
1≤mj≤δj

ρ
mj
j

mj !

(73)

Therefore,

g′′j (ρj) =

(∑
1≤mj≤δj

ρ
mj
j

mj !

)(
− ρ

δj−1

j

(δj−1)!

)
−
(

1− ρ
δj
j

δj !

)(∑
1≤mj≤δj

ρ
mj−1

j

(mj−1)!

)
(∑

1≤mj≤δj
ρ
mj
j

mj !

)2 (74)

To show that g is concave, we must check ∑
1≤mj≤δj

ρ
mj
j

mj !

 ρ
δj−1
j

(δj − 1)!
+

(
1−

ρ
δj
j

δj !

) ∑
1≤mj≤δj

ρ
mj−1
j

(mj − 1)!

?
≥ 0 (75)

∑
1≤mj≤δj

ρ
mj−1
j

(mj − 1)!
+

∑
1≤mj≤δj

ρ
mj+δj−1
j

(
1

mj !(δj − 1)!
− 1

(mj − 1)!δj !

)
?
≥ 0 (76)

∑
1≤mj≤δj

ρ
mj−1
j

(mj − 1)!
+

∑
1≤mj≤δj

ρ
mj+δj−1
j

(mj − 1)!(δj − 1)!

(
1

mj
− 1

δj

)
?
≥ 0 (77)

Since mj ≤ δj , 1/mj ≥ 1/δj . Therefore, g′′j (ρj) ≤ 0, i.e., gj is indeed concave. Further, the objective
function is a product of log-concave functions - therefore it is also log-concave.

Appendix D Relaxing the recommender problem

Consider the substitution exp(z) = α exp(x), where 0 ≤ α ≤ 1. Substituting this in the second constraint
will not change it because

log

∑
j,j 6=i

exp (yij + xj − xi − logµi + logµj)

 = log

∑
j,j 6=i

exp (yij + zj − zi − logµi + log µj)

 (78)
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Substituting exp(zi) = α exp(xi) in the objective function gives

log

 J∑
i=1

J∑
j=1,j 6=i

exp (zi + yij + logSij)

 = log

 J∑
i=1

J∑
j=1,j 6=i

exp (xi + yij + logSij)

+ logα (79)

This means that increasing α increases the value of the objective function and hence the solution under the
constraint

∑
i exp(xi) ≤ 1 is equal to the solution under the constraint

∑
i exp(xi) = 1. In general, the first

constraint will have to be relaxed to make the problem convex. If the first constraint is relaxed, the third
constraint (

∑
i exp(yij) = 1 ∀j = 1 . . . J) can be relaxed without changing the value of the optimization

objective, using the same argument as before for the second constraint. This formulation will turn out to be
useful for subsequent objectives.
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