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Abstract—We propose a new prototype model for no-reference
video quality assessment (VQA) based on the natural statistics
of space-time chips of videos. Space-time chips (ST-chips) are a
new, quality-aware feature space which we define as space-time
localized cuts of video data in directions that are determined by
the local motion flow. We use parametrized distribution fits to the
bandpass histograms of space-time chips to characterize quality,
and show that the parameters from these models are affected
by distortion and can hence be used to objectively predict the
quality of videos. Our prototype method, which we call ChipQA-
0, is agnostic to the types of distortion affecting the video, and is
based on identifying and quantifying deviations from the expected
statistics of natural, undistorted ST-chips in order to predict
video quality. We train and test our resulting model on several
large VQA databases and show that our model achieves high
correlation against human judgments of video quality and is
competitive with state-of-the-art models.

Index Terms—Video quality assessment, Space-time chips,
Natural Video Statistics

I. INTRODUCTION

Video content accounts for a very large portion of traffic on
the Internet and continues to surge in volume, as more people
stream content on smartphones, tablets, and high-definition
screens. Being able to predict perceived video quality is
important to content providers for monitoring and controlling
streaming quality and thereby enhance customer satisfaction.
Video quality is affected when the video is distorted, which
occurs due to a number of reasons as the video is being
captured, transmitted, received, and displayed. The task of
predicting the quality of a distorted video without a pristine
video of the same content to compare it with, which is called
no-reference (NR) VQA, is difficult. NR VQA is a hard
problem because less information is available than models that
use a reference, and conventional notions of signal fidelity are
not applicable. Here we describe a new NR VQA algorithm
based on the statistics of local windows oriented in space and
time.

We briefly review state-of-the-art NR VQA algorithms. V-
BLIINDS [1] is a distortion agnostic NR VQA algorithm
that models the statistics of DCTs of frame differences to
predict video quality. These features are based on models
of the human visual system (HVS). HVS-based algorithms
posit that natural video statistics have a regularity from which
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the statistics of distorted videos deviate, and which the HVS
is attuned to. Human perceptual judgments of quality are
influenced by the degree to which the statistics of distorted
videos deviate from those of natural videos. Such models thus
attempt to understand and mimic operations of the HVS in
order to identify the regularity in natural video statistics. VI-
IDEO [2] is another algorithm that is belongs to this category.
VIIDEO is completely ”blind,” in the sense that it does not
require any training and can be directly deployed. VIIDEO
makes use of observed high inter subband correlations of
natural videos to predict quality. TLVQM [3] takes a different
approach to the problem, where the goal is to define features
that capture distortion, and not to characterize naturalness
per se. A number of spatiotemporal features are defined at
two computational levels, collectively designed to capture a
wide range of distortions. TLVQM has about 30 different
user-defined parameters, which may affect its performance on
databases it was not exposed to when it was designed.

It has also been observed [4] that NR image quality assess-
ment algorithms work reasonably well when applied frame-by-
frame to distorted videos of user-generated content because of
a lack of temporal variation in such videos. FRIQUEE [5]
is a state-of-the-art algorithm for NR IQA that uses a bag
of perceptually motivated features. BRISQUE [6] is another
NR IQA algorithm that models the statistics of spatially band-
passed coefficients of images, motivated by the fact that the
early stages of the HVS perform spatial bandpassing. NIQE
[7] also models statistics of spatially bandpassed coefficients,
but generates an opinion score by quantifying the deviation
of a distorted image from the statistical fit to a corpus of
natural images and does not require training. CORNIA [8]
approaches the problem differently from HVS-based models,
and builds a dictionary to represent images effectively for
quality assessment.

Videos are spatiotemporal signals and distortions affecting
videos can be spatial or temporal or a combination of both.
An effective NR VQA algorithm must be able to build a
robust representation of the spatiotemporal information in
videos. Primary visual cortex (area V1) is implicated in
decomposing visual signals into orientation and scale-tuned
spatial and temporal channels. V1 neurons are sensitive to
specific local orientations of motion. This decomposition is
passed on to other areas of the brain, including area mid-
dle temporal (MT), where further motion processing occurs.978-1-4799-7492-4/15/$31.00 ©2020 IEEE
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Extra-striate cortical area MT is known to contain neurons
that are sensitive to motion over larger spatial fields [9],
[10]. We propose a perceptually motivated NR VQA model,
ChipQA, that captures both spatial and temporal distortions,
by building a representation of local spatiotemporal data that is
attuned to local orientations of motion but is studied over large
spatial fields. We show how observed statistical regularities of
spatially bandpassed coefficients can be extended temporally
and introduce the notion of space-time chips, which follow
natural video statistics (NVS). We evaluate the new model on
a number of databases and show that we are able to achieve
state-of-the-art performance at reasonable computational cost.

II. PROPOSED ALGORITHM

A. Space-time Chips

If we consider videos as space-time volumes of data, Space-
time (ST) chips can be defined as chips of this volume in any
direction or orientation. ST-Chips are similar to space-time
slices [11]–[13], but are highly localized in space and time. We
are interested in finding the specific directions and orientations
of these chips that capture the regularity of natural videos.
Consider a frame IT at time instant T , and its preceding frames
IT−T ′+1..IT−1 from time instant T − T ′ + 1 onward, all of
size M ×N . There are T ′ frames in this space-time volume.
Assume that we have coherent motion vectors available to us at
time instant T . To the best of our knowledge, localized groups
of pixels are in motion along the directions of these vectors.
Assuming T ′ is small enough, a local spatiotemporal chip of
this volume that is oriented perpendicular to the motion vector
at each spatial location would capture the local areas that are
in motion at each location and across time.

Taking into account the smoothness of motion across time
for natural videos, we expect ST-chips to follow similar
regularities as we would expect to find for stationary frames.
Spatially bandpassed coefficients are known to follow a gen-
eralized Gaussian distribution (GGD) in the first order, and
their second order statistics can be approximated as following
an asymmetric generalized Gaussian distribution (AGGD) [6],
[7]. Accordingly, we define the mean subtracted contrast
normalized (MSCN) coefficients

ÎT (i, j) =
IT (i, j)− µT (i, j)

σT (i, j) + C
(1)

where (i, j) are spatial coordinates and we define the local
mean and local variance as

µT (i, j) =

k=K∑
k=−K

k=L∑
k=−L

w(k, l)IT (i+ k, j + l) (2)

σT (i, j) =

√√√√ k=K∑
k=−K

k=L∑
k=−L

w(k, l)(IT (i+ k, j + l)− µT (i, j))2

(3)
respectively. w = {w(k, l), k ∈ −K, ..,K, l ∈ −L, .., L} is a
2D circularly-symmetric Gaussian weighting function sampled
out to 3 standard deviations and rescaled to unit volume.

Fig. 1. Extracting ST-chips. On the left is a spatiotemporal volume of frames
from time T − T ′ + 1 to T . The green arrows represent motion vectors at
each spatial patch at time T . ST-chips are cut perpendicular to these across
time and aggregated across spatial patches to form the frame on the right at
each time instance.

Motion has been used to guide video quality prediction
in several full-reference models [9], [14], [15], but few NR
models [1], [16]. Given a dense motion flow field at time
T , we first find the median of the flow field across a spatial
window of size R ×R. This gives us a more robust estimate
of the flow in each spatial window. We cut the video volume
of MSCN coefficients across time from ÎT−T ′+1 to ÎT at each
window in the direction perpendicular to the motion vectors
at each spatially localized window, as shown in Fig. 1, and
then aggregate these chips across the spatial windows to form
a single “frame” ST of ST-Chips at each time instance. Each
chip is constrained to pass through the center of the spatial
R × R patch, and to be perpendicular to the median flow of
that patch. R pairs of x and y coordinates obtained from the
relevant line equations are rounded to integers for sampling
from the video.In this way, the chips at each patch are uniquely
defined by the spatial location of the patch and the direction
of the median motion vector. These frames do not have well
defined axes because each ST chip is oriented differently in
space-time, but they contain important spatiotemporal data.
For simplicity, we define R = T ′. ST then has dimensions
M ′ ×N ′, where M ′ = T ′bMT ′ c and N ′ = T ′b NT ′ c.

Ideally, the directions we have defined are the ones most
likely to capture objects in motion. To see this, consider an
object in motion in a fixed direction. An ST chip that is
perpendicular to the direction of motion of the object is a
plane that cuts through the cross-section of the object as it
moves along time. A concrete example of this is given in Fig.
2 for a video before its MSCN coefficients are computed.

ST-Chips are collected over all spatial patches of MSCN
coefficients for every group of preceding T ′ frames at each
time instant T and are then aggregated. We use the Farneback
[17] optical flow algorithm in all our experiments. Due to the
smoothness of motion over time and the fact that we expect
these chips to have captured natural objects in motion, we
hypothesize that this aggregated spatiotemporal data will fol-
low a regular form of natural video statistics. Spatiotemporal
distortions are expected to affect the optical flow as well as



Fig. 2. ST-Chips capture views of objects in motion. In this video, the person
in the center moves to their right over time. Consequently, a chip taken in the
proximity of their face over this duration and perpendicular to their motion
captures their face itself.

spatial data. The motion estimates from optical flow can be
distorted for distorted videos, and hence we would expect to
see a deviation from the statistics of chips computed from
pristine videos. We would also expect to see a deviation in the
statistics of the MSCN coefficients collected across time, as
distortions affect their regularity across time and across space.
Both the distortion of MSCN coefficients and the distortion of
optical flow are expected to contribute to a deviation from the
statistics of a pristine video, and we confirm this empirically,
as shown in Figs. 3, 4, and 5. ST-Chips of MSCN coefficients
are found to follow a generalized Gaussian distribution (GGD)
of the form:

f(x;α;β) =
α

2βΓ( 1
α )

exp(−(
|x|
β

)α) (4)

where Γ(.) is the gamma function:

Γ(α) =

∫ ∞
0

tα−1 exp(−t)dt. (5)

The shape parameter α of the GGD and the variance of the
distribution are estimated using the moment-matching method
described in [18].

We also model the second-order statistics of ST-Chips.
Define the collection of ST-Chips aggregated at each time
instance T as ST , and define the pairwise products

HT (i, j) = ST (i, j)ST (i, j + 1) (6)

VT (i, j) = ST (i, j)ST (i+ 1, j) (7)

D1T (i, j) = ST (i, j)ST (i+ 1, j + 1) (8)

D2T (i, j) = ST (i, j)ST (i+ 1, j − 1) (9)

These pairwise products of neighboring ST chip values along
four orientations are modeled as following an asymmetric
generalized Gaussian distribution (AGGD), which is given by:

f(x; ν, σ2
l , σ

2
r) =

{
ν

(βl+βr)Γ( 1
ν )

exp(−(− x
βl

)ν) x < 0

ν
(βl+βr)Γ( 1

ν )
exp(−( xβr )ν) x > 0

(10)
where

βl = σl

√
Γ( 1

ν )

Γ( 3
ν )

(11)

βr = σr

√
Γ( 1

ν )

Γ( 3
ν )

(12)

ν controls the shape of the distribution and σl and σr con-
trol the spread on each side of the mode. The parameters
(η, ν, σ2

l , σ
2
r ) are extracted from the best AGGD fit to each

pairwise product, where

η = (βr − βl)
Γ( 2

ν )

Γ( 1
ν )
. (13)

Videos are affected at multiple scales by distortions, and so all
the features defined above are extracted at a reduced resolution
as well. Each frame is low-pass filtered and downsampled by
a factor of 2. Motion vectors are computed at the reduced
scale and ST-Chips are extracted, as described previously, from
volumes of MSCN coefficients at the reduced scale.

B. Spatiotemporal Gradient Chips

The spatial gradients of videos contain important infor-
mation about edges and corners. Distortions are often more
noticeable around edges and affect gradient fields. For this
reason, we compute the magnitude of the gradient for each
frame using the Sobel filter. We then extract ST-Chips from
spatiotemporal volumes of the MSCN coefficients of the
gradient magnitude at two scales. The first-order and second-
order statistics are modeled as GGD and AGGD, respectively,
as described earlier for MSCN coefficients of pixel data.

C. Spatial features

Spatial features and a naturalness score are computed frame-
by-frame with the image naturalness index NIQE. These
capture purely spatial aspects of distortion that may not be
completely contained in ST-Chips, and hence boost perfor-
mance.

D. Quality assessment

Table I gives a summary of all the features used in the
prototype algorithm, ChipQA-0. A total of 109 features are
extracted at each time instance, starting from the T ′ = 5th

frame. Note that the way in which ST-Chips are extracted
could vary, and the use of optical flow in this prototype
algorithm is just one of many ways in which these chips could
be defined for the task of quality assessment.

III. EXPERIMENTS AND RESULTS

A. Databases

We evaluated our algorithm on four databases, as described
in the following section.

1) LIVE-APV Livestream VQA Database: This new
database, which we call the LIVE-APV Livestream VQA
database, and which will soon be released, was created for the
purpose of developing tools for the quality assessment of live
streamed videos. The database contains 367 videos, including
both synthetically and authentically distorted videos. Of these,
52 videos are authentically distorted videos of different events.
The remaining 315 videos were created by applying 6 differ-
ent distortions on 45 unique contents. The 6 distortions are
aliasing, compression, flicker, judder, interlacing, and frame
drop. All the videos are of 4K resolution and were shown on
a 4K TV in a human study in which 37 subjects participated.



(a) Aliased and pristine (b) Judder and pristine (c) Flicker and pristine (d) Interlaced and pristine

Fig. 3. Empirical distributions of ST-Chips. Pristine (original) distributions are in black and distorted distributions are in red.

(a) Compressed and pristine(b) Frame Drop and pristine (c) Flicker and pristine (d) Judder and pristine.

Fig. 4. Empirical distributions of ST Gradient chips. Pristine (original) distributions are in black and distorted distributions are in red.

(a) Aliased and pristine (b) Interlaced and pristine (c) Compressed and pristine (d) Frame drop and pristine

Fig. 5. Empirical distributions of paired products of ST-Chips. Pristine (original) distributions are in black and distorted distributions are in red.

TABLE I
DESCRIPTIONS OF FEATURES IN CHIPQA.

Domain Description Feature index
ST-Chip Shape and scale parameters from GGD fits at two scales. f1 − f4
ST-Chip Four parameters from AGGD fitted to pairwise products at two scales. f5 − f36
ST Gradient Chips Shape and scale parameters from GGD fits at two scales. f37 − f40
ST Gradient Chips Four parameters from AGGD fitted to pairwise products at two scales. f41 − f72
Spatial Features and scores of spatial naturalness index NIQE. f73 − f109

2) Konvid-1k: Konvid-1k [19] is a database of 1200 videos
of user-generated content with authentic distortions. Many
videos in this database do not have significant temporal
variation, and it has been found that NR IQA algorithms
applied frame-by-frame often achieve high performance on
Konvid-1k without making use of temporal information. All
videos are of resolution 960×540.

3) LIVE Video Quality Challenge (VQC): The LIVE VQC
database [20] has 585 videos of authentically distorted videos,
each labeled by an average of 240 human opinion scores. The
videos are of user-generated content.

4) LIVE Mobile Database: The LIVE Mobile [21] database
has 200 distorted videos created from 10 reference videos. The
synthetically applied distortions are compression, wireless-
packet loss, temporally varying compression levels, and frame-
freezes. This study was conducted on mobile and tablet

devices.

B. Training Protocol

The LIVE-APV database contains a mix of synthetically and
authentically distorted content. Each algorithm was tested on
1000 random train-test splits, where 80% of the data was used
for training, and 20% for testing. 5-fold cross validation was
performed while ensuring content separation between training
and validation data for each fold. Videos of the same content
were not allowed to mix between folds. On the other databases,
we implemented a 80-20 train-test split. A support vector
regressor (SVR) was used to learn mappings from features
to mean opinion scores. Cross validation was used to find the
best parameters for the SVR for each algorithm. NIQE and
VIIDEO are completely blind algorithms and were not trained,
but were evaluated against the test set.



TABLE II
MEDIAN SROCC AND LCC FOR 1000 SPLITS ON THE LIVE-APV

LIVESTREAM VQA DATABASE

METHOD SROCC LCC
NIQE [7] 0.3395 0.4962
BRISQUE [6] (1 fps) 0.6224 0.6843
HIGRADE [23] (1 fps) 0.7159 0.7388
CORNIA [8] (1 fps) 0.6778 0.7076
TLVQM [3] 0.7597 0.7743
VIIDEO [2] -0.0039 0.2155
V-BLIINDS [1] 0.7264 0.7646
Spatial 0.6770 0.7370
ST-Chips 0.6742 0.7235
ST Gradient Chips 0.7450 0.7611
ChipQA-0 0.7802 0.8054

TABLE III
MEDIAN SROCC AND LCC FOR 100 SPLITS ON THE KONVID DATABASE

METHOD SROCC/LCC
NIQE [7] 0.3559/0.3860
BRISQUE [6] (1 fps) 0.5876/0.5989
HIGRADE [23] (1 fps) 0.7310/0.7390
FRIQUEE [5] (1 fps) 0.7414/0.7486
CORNIA [8] (1 fps) 0.7685/0.7671
TLVQM [3] 0.7749/0.7715
VIIDEO [2] 0.3107/0.3269
V-BLIINDS [1] 0.7127/0.7085
ChipQA-0 0.6973/0.6943

We report the Spearman’s rank ordered correlation coeffi-
cient (SROCC) and the Pearsons linear correlation coefficient
(LCC) between the scores predicted by the different algorithms
and the subjective mean opinion scores. The predicted score
was passed through the non-linearity described in [22] before
the LCC was computed. We report results for 1000 splits for
all algorithms on the LIVE-APV database, and 100 splits on
all other databases. Results are shown in Tables II, III, IV, and
V. We did not compute NR IQA features for every frame of
each video in the databases, but computed them for at least 1
frame every second for each video. We averaged the features
obtained by the NR IQA algorithms across frames and trained
them with an SVR to map to mean opinion scores.

TABLE IV
MEDIAN SROCC AND LCC FOR 100 SPLITS ON THE LIVE MOBILE

DATABASE

METHOD SROCC/LCC
BRISQUE [6] (1 fps) 0.4876/0.5215
VIIDEO [2] 0.2751/0.3439
VBLIINDS [1] 0.7960/0.8585
TLVQM [3] 0.8247/0.8744
ChipQA-0 0.7898/0.8435

C. Performance

ChipQA-0 performs better than competing algorithms on
the new LIVE-APV database, in which there are a number of
commonly occurring temporal distortions, such as interlacing,

TABLE V
MEDIAN SROCC AND LCC FOR 100 SPLITS ON THE LIVE VQC

DATABASE

METHOD SROCC/LCC
BRISQUE [6] (1 fps) 0.6192/0.6519
VIIDEO [2] -0.0336/-0.0064
VBLIINDS [1] 0.7005/0.7251
TLVQM [3] 0.8026/0.7999
ChipQA-0 0.6692/0.6965

TABLE VI
COMPUTATION TIME FOR A SINGLE 3840X2160 VIDEO WITH 210 FRAMES

FROM THE LIVE-APV LIVESTREAM VQA DATABASE

METHOD Time (s)
BRISQUE [6] 273
HIGRADE [23] 14490
CORNIA [8] 1797
FRIQUEE [5] 924000
VIIDEO [2] 4950
VBLIINDS [1] 10774
TLVQM [3] 892
ChipQA-0 2284

judder, frame drop, and temporal variation of compression
levels. We found the individual performance of each feature
space on the LIVE-APV database, and the results are shown
in Table II. It is clear that ST-Chips and ST Gradient chips
provide quality-aware information that boosts the performance
of the algorithm on fast-moving, livestreamed videos. Studies
have shown that UGC videos are dominated by spatial dis-
tortions [24]. Both Konvid-1k and LIVE VQC are known to
not contain significant temporal variation and therefore NR
IQA algorithms perform well on them without the need for
temporal information or processing. Nevertheless, ChipQA-0
achieves competitive performance on these databases as well.
It also performs competitively on the LIVE Mobile database,
which has a mix of spatial and temporal distortions.

We perform a one-sided t test on the 1000 SROCCs of
the various algorithms on the live streaming database with a
95% confidence level to evaluate the statistical signifiance of
the results. The results show that ChipQA-0 is statistically
superior to all other algorithms on the LIVE-APV Livestream
VQA database.

D. Computational cost

Table VI shows the computation times required to extract
features for each algorithm on a single 4K video from the
LIVE-APV database. Costs for the IQA algorithms were
estimated by multiplying the computation time for a single
frame by the total number of frames in the video. VIIDEO,
VBLIINDS, and ChipQA-0 were implemented with Python.
The other algorithms were implemented with MATLAB®. It
is not possible to directly compare these numbers because
they were implemented on different platforms with different
optimization strategies, but they can serve as a rough estimate,
and ChipQA-0 is reasonably efficient. It was run on an Intel
i9 9820X CPU with 10 cores and a maximum frequency of



TABLE VII
RESULTS OF ONE-SIDED T-TEST PERFORMED BETWEEN SROCC VALUES OF VARIOUS ALGORITHMS ON THE LIVE-APV DATABASE. ’1’ (’-1’)
INDICATES THAT THE ROW ALGORITHM IS STATISTICALLY SUPERIOR (INFERIOR) TO THE COLUMN ALGORITHM. THE MATRIX IS SYMMETRIC

METHOD NIQE BRISQUE HIGRADE CORNIA TLVQM VIIDEO V-BLIINDS ChipQA-0
NIQE - -1 -1 -1 -1 1 -1 -1
BRISQUE 1 - -1 -1 -1 1 -1 -1
HIGRADE 1 1 - 1 -1 1 -1 -1
CORNIA 1 1 -1 - -1 1 -1 -1
TLVQM 1 1 1 1 - 1 1 -1
VIIDEO -1 -1 -1 -1 -1 - -1 -1
V-BLIINDS 1 1 1 1 -1 1 - -1
ChipQA-0 1 1 1 1 1 1 1 -

4.1 GHz. All other algorithms were run on a AMD Ryzen 5
3600 with a maximum frequency of 4.2 GHz.

IV. CONCLUSION

We have proposed the novel concept of ST-Chips, and
defined how they are extracted and described why they are
relevant to video quality. We used the statistics of these chips
to model ’naturalness’ and deviations from naturalness, and
proposed parameterized statistical fits to their statistics. We
further used the parameters from these statistical fits to map
videos to subjective opinions of video quality without explic-
itly finding distortion-specific features and without reference
videos. We showed that our prototype distortion-agnostic, no-
reference video quality assessment algorithm, ChipQA-0, is
highly competitive with other state-of-the-art models on a
number of databases. We continue to refine the model, with
one aim being to eliminate the need for an optical flow
algorithm.
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